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ABSTRACT: Simulating asynchronous multiple-loop 
networks is commonly considered a difficult task for parallel 
programming. Two examples of asynchronous multiple-loop 
networks are presented in this article: a stylized queuing 
system and an lsing model. In both cases, the network is an 
n x n grid on a torus and includes at least an order of nz 
feedback loops. A new distributed simulation algorithm is 
demonstrated on these two examples. The algorithm 
combines three elements: (1) the bounded lag restriction; 
(2) minimum propagation delays; and (3) the so-called 
opaque periods. We prove that if N processing elements 
(PEs) execute the algorithm in parallel and the simulated 
system exhibits sufficient density of events, then, on average, 
processing one event would require O(log N) instructions of 
one PE. Experiments on a shared memory MlMD bus 
computer (Sequent’s Balance) and on a SIMD computer 
(Connection Machine) show speed-ups greater than 16 on 25 
PEs of a Balance and greater than 1900 on 214 PEs of a 
Connection Machine. 

1. INTRODUCTION 
The queuing network paradigm has been widely used 
in distributed event-driven simulations [3, 4, 6, 7, 9, 10, 
11,17, 22, 231. The ease with which a system can be 
described in the form of a queuing network does not 
necessarily imply a comparable ease in simulating the 
system in this form. Assuming that different queues are 
hosted by different processing elements (PEs), when 
two queues are not directly connected in the network, 
it does not follow that the two PEs hosting these queues 
are prohibited from direct communication with each 
other. However, many queuing-network-style algo- 
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rithms silently assume that if the algorithm is not cen- 
tralized, its topology of communication must be in a 
strict agreement with the topology of communication in 
the simulated network. 

The unnecessary restriction of topological isomorph- 
ism can make the algorithm unduly sensitive to the 
topology of the simulated network. These algorithms 
usually efficiently simulate a straight line of queues 
(Fig. la). However, unless roll-back is allowed [7, 111, 
the deadlock problem emerges as soon as alternative 
paths (Fig. 1 b) appear in the network. The means to 
counter deadlock include: infinite buffers [lo, 221, addi- 
tional messages [lo, 171, and a detection/resolution 
method [4]. The problem of deadlock may become 
harder to solve when the simulated network has feed- 
back loops (Fig. lc). In this case even large buffers do 
not prevent deadlock [22], and using either of the other 
two approaches may result in low speed-up as shown 
empirically [6, 231. It is commonly believed that each 
additional loop on the network graph significantly 
degrades simulation performance. Proposed topology- 
insensitive algorithms are accompanied by other diffi- 
culties such as the danger of cascading roll-backs 
[7, 111, or a low degree of achievable parallelism [12]. 

From the literature one might get the impression that 
a multiple-loop asynchronous network is intractable for 
an efficient distributed simulation. This article attempts 
to change the impression by presenting two examples 
of efficient distributed simulation of such networks. 
One example, the token transport network, is a stylized 
asynchronous queuing system, while the other, an 
asynchronous Ising system, belongs to computational 
physics. These are case presentations of a new distrib- 
uted event-driven algorithm. 
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FIGURE 1. Network Topologies 

Described in an abstract form unrelated to queues or 
other specific applications, the algorithm avoids unnec- 
essary restricutions inherited from an application. The 
stylized queuing example shows how an application 
can be mapped into this abstract form. The main ele- 
ments of the algorithm, which are easily identified in 
this form, are: (1) the bounded lug, which means that the 
difference in the simulated time between events being 
processed concurrently is bounded from above by a 
known finite constant; (2) minimum propagation delays 
between the parts of the simulated system; and (3) the 
so-called opaque periods, which are the delays caused by 
the non-preemptive states these parts can enter, as ex- 
plained in Section 3. 

In general, the algorithm has a synchronous structure 
proceeding in iterations, while the simulated system 
may be asynchronous. In specific cases, like the Ising 
simulation, the synchrony can be relaxed. Since there 
is no deadlock or blocking in the algorithm, there is no 
need for deadlock detection/resolution or avoidance. 
Each iteration is guaranteed to terminate with some 
events having been processed at it. 

The combined use of the previously mentioned three 
elements in one algorithm is new, as is the way these 
elements are combined; however, the use of any one 
element has been reported in the literature. Specifi- 
cally, in those queuing system models that assume infi- 
nite buffers and zero transmission durations, both the 
idea of a minimum-propagation delay and the idea of 
an opaque-period stem from the phenomenon of a non- 
zero service duration. In such contexts, these two ele- 

ments have been recognized since the early algorithms 
[3, 10, 221. However, in the complex environment of a 
specific example, the difference between opaque pe- 
riods and propagation delays can be masked. This dif- 
ference does not seem to be clearly stated in literature. 
Demonstrating the difference is one purpose of present- 
ing the Ising simulation example, where the precom- 
puted minimum propagation delays degenerate to zero, 
but substantial opaque periods still exist. 

Recently, the idea of the bounded lag was indepen- 
dently introduced as a moving time window [24]. Its 
implementation [24] is different from that proposed 
here. Except for the case where the window size is so 
small that it cannot contain two causally connected 
events processed by different PEs, the algorithm [24] 
guarantees no correctness in the usual sense or even 
reproducibility of the simulation. In contrast, correct- 
ness and reproducibility in our algorithm are preserved 
for any nonnegative lag value. 

Many authors appreciate the difficulty of a theoreti- 
cal performance evaluation for an asynchronous dis- 
tributed discrete event simulation and limit themselves 
to empirical evaluation. For example, surve:y [17] pro- 
poses “. . the empirical investigation of various heuris- 
tics on a wide variety of problems . . . .” In contrast, this 
article presents an efficiency proof for the proposed algo- 
rithm. We show that on an appropriate physically real- 
izable massively parallel processor, the algo:rithm is at 
least an order of l/log N scalable. This means that if 
the sizes of both the simulated system and the simula- 
tor increase proportionally, keeping local properties 
intact, then the order of the ratio of progress rates 
of processing time over simulated time increases as 
O(log(size)). Specifically, in our queuing network exam- 
ple, if N PEs execute the algorithm in paraBel, so that 
each queue is hosted by its own PE, and the simulated 
system exhibits sufficient density of events so that at 
each iteration there are, on average, an order of N non- 
empty queues with pending events within the bounded 
lag horizon, then the average of O(log N) instructions of 
one PE will suffice for processing one event. Of this 
cost, only O(1) instructions per event takes proper 
event processing. The algorithm synchronization ac- 
counts for the rest of the cost. Best serial list manipula- 
tion techniques, that do not use constructs 1-3 above, 
require the average of an order log N instructions for 
processing one event. Since the cost per event in the 
parallel algorithm is asymptotically not less than in the 
serial algorithm, but N times more processors execute 
the parallel algorithm, the speed-up is provably not less 
than of an order of N, i.e., linear speed-up. 

The proposed simulation algorithm is inte:nded for 
parallel execution, however, it can also be run serially. 
A number of such serial experiments were performed 
for the queuing system example. Their results clearly 
demonstrate the potential for a high parallel speed-up. 
A repetition of these experiments for a parallel com- 
puter is currently in progress. Their preliminary results 
confirm the prediction of a high speed-up. 

For the Ising model, simulation experimems were 
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also performed on the available parallel hardware 
which was a Connection Machine” and a Balance” 
computer. The efficiencies and speed-ups in these runs 
met predictions and were substantial. For example, the 
observed speed-up on 25 PEs of the Balance computer 
was greater than 16 while on 214 PEs of the Connection 
Machine the speed-up was greater than 1900. 

The paper is organized as follows: First, the two 
multiple-loop network examples are presented together 
with their mapping into an abstract world view re- 
quired by the algorithm. Three algorithm elements are 
defined and identified in the examples. The algorithms 
are then described, and the results of computer experi- 
ments and a performance evaluation, including an out- 
line of the performance proof follow. We conclude by 
listing other feasible applications of the algorithm, its 
known shortcomings, and directions for further re- 
search. 

2. EXAMPLES 

A Token Transport Network 
The simulated system is an n x n toroidal network. 
(A 4 x 4 example is depicted in Figure 2.) A node of the 

FIGURE 2. A 4 x 4 Toroidal Network 

network is a server with an attached input queue 
buffer of infinite capacity. An idling server is constantly 
trying to change its status to serving by removing a 
token from the input buffer and starting service. The 
service durations are bounded from below by u sec- 
onds, (r > 0. When the service is completed, the token 
is either deleted from the system or dropped into the 
input queue of one of the four neighboring servers. 
After a token is served, the server assumes an idling 

status if no more tokens remain in its input queue or, if 
at least one token is left in the input queue, the server 
removes one token from the queue and resumes a serv- 
ing status. A server which always deletes a token can 
be viewed as a “sink.” A server whose input buffer is 
full to capacity (+m) can be viewed as a “source.” 

In a distributed simulation algorithm, a server can be 
represented by a separate PE. PEi, which hosts simula- 
tion on behalf of server i, maintains the pool of pending 
local events Iii. Each event e E Iii is a pair e = (contents, 
time). PEi processes its events one at a time, during 
which it modifies its own pool II,, and/or the pools II, 
of its neighbors (in the simulated network). A detailed 
description of this scheme follows. 

The state of server i is a pair (sip 9,), where si indicates 
the server status, that is, si = idling or si = serving, and 
q1 2 0 is the integer number of tokens contained by the 
input buffer. There are three types of events: (1) begin 
service; (2) end service; and (3) drop a token into the 
input queue. The contents of an event consist of the 
event type and the node number where the event oc- 
curs. For example, (3, i, t) is an event with contents 
(3, i) and time t. This event means “drop a token into 
the input queue of server i at time t” and it belongs to 
PO01 Iii. 

Five rules for local event processing are presented in 
Figure 3. Each rule tells what PEi must do to process a 
particular event e, provided that: (1) this event e is 
chosen for processing; and (2) a specified condition 
holds. For example, rule 5 describes the processing of 
event (3, i, t), ifs, = serving. 

Simulation begins with some pools Iii being non- 
empty. Each non-empty pool must contain exactly one 
event (1, i, 0) and the buffer must be non-empty: 9i > 0. 
The corresponding server begins service as soon as the 

I%& I. PPBcess event.(l , i,. f), if 91 > 0, as follows: 

-’ Ruls Z.~.PKK%SS event (S, i, t), if 9; ) 0,. as fdlOWS: *C.’ 
Insert event (3, r’, f) 

Rile 3. Process evfbtj2, i, t), if 9{ = 0, as follows: 
: ,Ph$sl(-le state si :== idling 

Flu/d 4-r pmccss event (3, i, t), if qi = Q and si = idling, as 
fOllO$& / 

.A.*. Chaage state s, := serving and 9, :F qi + 1 
4.2. Insert event (1, i, t) 

Rule 5. P&cess event (3, i, r),~# si = sk7Hrzg, as follows: 
Change state 9i := 9) + 1 

BI Connection Machine is a registered trademark of Thinking Machines Cor- 
poration. 
oBalance is a trademark of Sequent Computer Systems. Inc. FIGURE 3. Rules for Processing Events 
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simu!lation starts at t = 0. Each empty pool Iii must, at 
the start, have an empty buffer: qi = 0. 

Thle following two situations are not covered in Fig- 
ure 3: (1) processing (1, i, t), if qi = 0; and (2) processing 
(3, i, t), if si = idling and qi > 0. Starting from the initial 
condi.tion, one can formally prove that neither (1) nor 
(2) can occur during simulation. This conforms with 
intuition; a service start cannot be processed if there is 
nothing to serve, and a server cannot be idling while 
there are tokens in its buffer. 

Instruction 1.1 in Figure 3 commands the PE to deter- 
mine fsemice , decide whether or not the token is deleted, 
and determine the output j which receives the token if 
the token is not deleted. These determinations can be 
arbitrary, within the given restrictions; i.e., tsemice 2 u 
and j must be a neighbor of i. For concreteness, in the 
computer experiments reported in Section 5, these de- 
terminations are as follows: 

1. Service durations tsemice are independent realiza- 
tions of a random variable, tsemice = u + 5; where cr is a 
constant, variable { is distributed exponentially, and 
E[{] == fi - c, so that E[tseruice] = w. 

2. The token is deleted after the service with prob- 
ability p; this deletion is independent of any other 
decision. 

3. The choice of which output j should receive the 
token is made randomly and uniformly among the four 
neighbors of i; this decision is independent of any 
other. 

In the preceding statements, (r, CL, and p are fixed 
parameters, 0 < u 5 p, 0 5 p 5 1. 

The rules in Figure 3 do not tell how events are 
chosen for processing. This choice should be deter- 
mined by a general strategy of simulation. A conven- 
tional strategy maintains a single event-list, where the 
event,s are ordered according to their times. An event 
or events with minimum times are chosen for process- 
ing, and before this processing is completed, no other 
event can be processed. This strategy should be quali- 
fied a.5 serial, even if the simulated system is distrib- 
uted over the different PEs of a parallel processor. The 
potential for a speed-up while using this strategy is 
limited because a single-event-list processing bottle- 
necks a sufficiently large system.’ This article describes 
a different, truly distributed strategy of simulation. 

Asynchronous Ising Model 
In the model of an Ising spin system, the same n x n 
torus network that was used in the queuing system 
example hosts a physical atom at each node. The atom, 
located at node i, has a magnetic spin s(i): s(i) = +l or 
s(i) = -1. In the asynchronous version of the Ising 
model. [8], the spins attempt to change at asynchronous, 
discrete times. Attempted spin change arrivals for a 
particular atom are random and form a Poisson process. 

’ Possibilities to parallelize this strategy are explored in [IZ], which concludes 
that at most speed-up of an order of log N can be achieved. but only when 
processing one event generates many new pending events. 

Arrivals for different atoms are independent, the arrival 
rate is the same, say X, for each atom. 

When an attempt arrives, the new spin is deter- 
mined, using the spin values of the given atom and the 
neighboring atoms just before the update time. A ran- 
dom experiment o may be also involved in the deter- 
mination: 

St(i) := new-state(s,-o(neighbors(i)), w). (2.11 

In (2.1), s(neighbors(i)) denotes the indexed set of 
states of all the neighbors of i including i itstelf. Sub- 
script t - 0 expresses the idea of “just before t.” Accord- 
ing to (2.1), the value of s(i) instantaneously changes at 
time t from s,-o(i) to St(i). At time t, the value of s(i) is 
already new. Concrete functions new...state( ) in (2.1) 
are given in the literature on the Ising model (e.g., [I]; 
see also [14]), and are not important for the purposes of 
this article. 

In this example, there is only one event type, “an 
attempted spin change,” and only one processing rule, 
formula (2.1). 

A well-known standard algorithm to simulate this 
system was invented by Metropolis et al. [18]. In the 
standard algorithm, the evolution of the spin configura- 
tion is a sequence of one-spin updates: Given a configu- 
ration, define the next configuration by cho’osing a 
node i uniformly at random and attempting to change 
the spin s(i) according to formula (2.1). 

The standard algorithm can be considered as a var- 
iant of the conventional single event-list technique, al- 
though no event-list is explicitly maintained. Here, N 
separate event streams are replaced by a single cumula- 
tive event stream and by a procedure which1 randomly 
delegates a node to meet each arrival. Thus, the time 
increment between consecutive spin change attempts is 
an independent realization of an exponentially distrib- 
uted random variable with mean l/(W), w:here N = n2 
is the total number of atoms in the network.. This sim- 
plification becomes possible because a sum of inde- 
pendent Poisson streams is a Poisson stream. If the ar- 
rival streams for different atoms do not enjoy this 
additivity property, an explicit event-list, one for all 
atoms, could be the best strategy [13]. With or without 
the event-list, the strategy is serial. This article presents 
efficient distributed strategies for simulating this model. 

3. ELEMENTS OF THE ALGORITHM 

Bounded lag 
Let T(e) denote the time of event e. The bounded lug 
restriction with parameter B is: 

If events e, and e2 are processed concurrently then 
1 T(el) - T(eZ) 1 5 B, where 0 I B < +w is a known 
constant. 

To maintain the bounded lag restriction, the 
(simulation) floor equal 

min T(e) i=1,2 ,... N.EII, 
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is computed. An event e is admitted for processing only 
if T(e) 5 floor + B. 

The Minimum Propagation Delay 
Let a graph G be associated with the simulated system. 
The nodes of G, numbered 1, . . . , N, identify the N 
parts of the system. G has a directed link i ---, j, if (1) 
processing of an event e, e E II,, can change pool II, or 
(2) the state of node i can directly influence the history 
at node j. Pool IIj in (1) can be changed in several ways: 
new events can be scheduled at node j, or events al- 
ready scheduled at node j can be canceled, or both. 

For the preceding examples, G coincides with the 
graph of the n x n toroidal network and N = n2, An 
example of item (1) in the definition above is instruc- 
tion 1.4 in Figure 3: event (3, j, t + fgpyyicp) is inserted 
into II, while processing event (1, i, t) E II,. Rule (2.1) 
for processing spin change attempts is an example of 
item (2). Note that if the state of a node is augmented 
with states of its neighbors, then (2) can be reduced to 
(1). This transformation would result in a more tedious 
though equivalent model for the Ising simulation. 

Before the simulation starts, the minimum propagation 
delay d(i, j) 2 0 is assigned to each ordered pair (i, j) of 
nodes of G. The assignment is carried out in the follow- 
ing steps: (1) d(i, i) = 0 for all i; (2) if i -+ j is a link in G, 
then an analysis of event processing rules yields the 
largest estimate d(i, j) such that an event or a state 
change which occurs at time t at node i can affect 
the history at node j no earlier than at time t + d(i, j); 
(3) if there exists a unique directed path from i to j, 
then d(i, j) is the sum of the delays along this path; if 
there are several such paths, d(i, j) is the minimum 
sum over all such paths; (4) if there is no directed 
path from i to j, then d(i, j) 2 +m. 

With this definition the triangle inequality, 
d(i, j) + d( j, k) 2 d(i, k), is guaranteed for any three 
nodes i, j, and k. 

Consider the example of a queuing system. Since 
fscrv;(? 2 u by rule 1 in Figure 3, minimum delay d(i, j) 
equals (r for any two neighbors i and j. For the pairs 
i and j which are not neighbors, d(i, j) is set equal to 
c times the number of links on a shortest path from 
i to j. For example, d(l1, 44) = 2u in Figure 2 since 
(11) + (14) ---, (44) is a shortest path from (11) to (44). 
Note that d(i, j) = d( j, i). Although this symmetry is 
convenient, it is not required in the general case. 

In this example, definitions 1-4 are equivalent to the 
following abstract definition: d(i, j) is the largest lower 
bound on the delay for the history of states at node j to 
become affected by a change at node i, that can be found 
before the simulation starts without knowing the change OY 

the states. Unfortunately, the latter definition is not 
equivalent to the former in a general case. We believe 
that a good mapping of a particular system into the 
structure of the distributed simulation algorithm is al- 
ways possible for which both definitions are equivalent. 
An instance of bad mapping: a three-noded network 
i + m --, j, where d(i, m) = d(i, j) = 1, but no change at i 
can affect the history at j, because m consists of two 

separate parts, m, and m2, where m, communicates 
only with i and m2 communicates only with j. For 
d(i, j) defined according to (3) as d(i, j) = d(i, m) + 
d(m, j) = 2, the property of d(i, j) contained in the ab- 
stract definition does not hold, since changes at i never 
propagate to j. A better mapping splits m into two dis- 
tinct nodes m, and m2. Then d(i, ml) = d(m2, j) = 1, 
d(mI, m2) = d(i, j) = +m, and the two definitions coin- 
cide. 

Given a constant Y > 0 and a node i, the incoming 
spherical region S J (i, Y), with its center at node i and 
with radius Y, is the set of all the nodes j such that 
d(j, i) 5 r. The outgoing spherical region S t (i, Y), with its 
center at node i and with radius r, is the set of all the 
nodes j such that d(i, j) I r. 

A key innovation of the proposed algorithm is to 
make the bounded lag restriction and the minimum 
propagation delays work in tandem. This reduces the 
computations needed for determining whether or not a 
particular event can be processed. The idea can be ex- 
plained using Figure 4, where a fragment of a large 
toroidal queuing system network with N = n2 nodes is 
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FIGURE 4. Bounded Region of Testing 

depicted. Since d(u, V) = d(v, u) for any nodes u and v, 
one has S 4 (i, r) = S t (i, Y). This set will be denoted 
S(i, r). Figure 4 is scaled so that the distance between 
two neighbors along a horizontal or a vertical line is 
equal to the minimum service time c. 

Assume, for simplicity, that all event times are dis- 
tinct and suppose one wishes to learn if it is possible to 
process an event e at node i. The time of e must be 
minimal among the events in II; in order to consider e 
as a candidate for processing. Checking this condition is 
sufficient in the serial simulation, where only one pool 
is maintained. However, this test is not sufficient in the 
distributed simulation. Indeed, an event e’ in another 
local pool It, with smaller time T(e’) < T(e) may exist. 
Processing e’, even indirectly, through a chain of inter- 
mediate events and pools, may affect event e. 

As pointed out in [x!], in principle, one should check 
all other N - 1 pools to see if such a “dangerous” event 
e’ exists. Such global screening is unacceptably expen- 
sive, however, when N is large. Suppose the algorithm 
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runs with lag B. Then one knows, even without screen- 
ing, that a node outside region S(i, B), say node j, can- 
not contain “dangerous” events, because no information 
from j can reach i early enough to affect e. Thus, the 
screening area is reduced to the bounded number of 
nodes: lying within S(i, B). 

Now let i = (23). Suppose, like node j = (2:2), all four 
neighbors j of i have “promised” not to transfer infor- 
mation to i until next-t;. If 

?ltXt-ti < min 
jeneighbors(i) 

?lf?Xt-tj, 

izi 

The testing procedure can be as follows: Let 

Ti 2 

i 

min 7(e) if Iii # 0 
ecn, 

+w if Iii = 0 

If Ly(i) denotes an estimate of the earliest time when 
other nodes can affect the history at node i, then 

then the spin change attempt at node i for time next-ti 
can be safely processed using the current spin values of 
the four neighbors. This exemplifies the use of opaque 
periods. 

m(i) = jGminB, (d(j, i) + min(T,, d(i, j) + Ti]). (3.1) 
1, 

pi 

Formula (3.1) represents two ways of affecting the his- 
tory at node i: 

1. An event e, e E II,, j # i, with time T(e) = T, causes 
a delivery of an event in Iii for time d(j, i) + Tj. 

2. An event e, e E Iii, with time T(e) = Ti causes a 
delivery of an event e’ in II,, j # i, for time d(i, j) + Ti. 
Event e’, in turn, causes a delivery of an event in IL for 
time ll(j, i) + d(i, j) + Ti. The net effect of these trans- 
actions is that event e, currently existing in II;, is re- 
flected back onto IL. 

Opaque periods also exist in the queuing system ex- 
ample and in such a context have been used in many 
algorithms [3, 4, 6, 9, 10, 18, 20, 221, where the property 
emphasized has been lookahead [3], i.e., the ability to 
predict future states of a part of the simulateId system, 
independently of the other parts. We emphasize an- 
other side of the same phenomenon, the imbility to 
communicate through the given part for the other parts. 
Figure 5 shows events in the network with graph 1 + 2 
+ 3. Node 2 begins service at the simulated time 7. and 
remains serving until time r,, + tsemice. Service duration 
tsemice is determined when the event “start service” is 
processed for simulated time TV. The crossed-out circle 
on axis & represents this event. 

If link 2 + 3 could transfer information during the 
service, then the best estimate for the earliest time 

Opaq,ue Periods 
In the Ising model example, for any two nodes i and j, 
no matter how far apart, d(i, j) = 0. Indeed, for any 
c > 0, no matter how small, there is a positive probabil- 
ity th,at a spin change of atom i will affect a spin change 
of atom j while the difference in time between the 
changes is less than C. 

Thus, the tandem approach seems not to work. How- 
ever, an efficient distributed simulation of this example 
is still. possible because of the opaque periods. An opaque 
period is a “promise” of a node not to transfer informa- 
tion along a certain outgoing link for a certain period of 
simulated time. 

In the Ising model, after an attempted spin change for 
node j has been processed, say for simulated time tj, the 
next attempt must be scheduled. Since the attempts 
form ia Poisson process with rate X, the time of the next 
attempt, say next-Q, is computed as 

?ZeXt-tj = tj - t In r(u), (3.2) 

where r(u) is an independent realization of a random 
variable uniformly distributed in (0, l), and In is the 
natural logarithm. 

For the time duration (tj, next-t,), no information can 
propagate via node j, since no change in the state of 
node ,i is visible to the other nodes. For example, if j = 
(22) in Figure 2, and node 21 changes its spin at time t,, 
tz2 c I’* c next-ta2, then node 23 has no way to learn 
about this change from node 22 before time next-t22. 
But (23) might learn about the change from other 
nodes, say from (24). 

et 

FIGURE 5. Effect of an Opaque Period on Event IPropagation 
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when event e can affect pool &, would be TV = 7(e) + 
d(l, 3) = I + d(1, 2) + d(2, 3). However since link z 
+ 3 is opaque, that is, unable to transfer information, 
event e cannot affect pool II3 earlier than at time 72 = 
max(T(e) + d(1, 2), 70 + fsemicel + d(2, 3). 

In a typical case, opaque periods cannot be precom- 
puted, unlike the minimum propagation delays. They 
should instead be determined again at each stage of 
simulation. Specifically, let ti be the current simulated 
time at node i. Then the opaque period for an outgoing 
link i + j has the form (ti, epij), where epij is the end of 
the opaque period. Since in both considered examples, 
Opij is independent of j, we call it op;. 

In the Ising model example, opi is equal to the next 
scheduled spin change attempt by atom i. Thus, for- 
mula (3.2), where next-tj should be substituted with epj, 
yields op,. The computation of epi is performed when a 
spin change attempt is processed. In the queuing sys- 
tem example, Opi is computed when event (1, i, t) is 
processed. Namely, after tservice is determined by rule 1 
in Figure 3, op, is computed as Opi = t + tservice. 

Both versions of the algorithm in Figure 6, with and 
without opaque periods, work for the queuing system 
example. The version with opaque periods sometimes 
works substantially faster than the one which uses only 
tandem. In the Ising model simulation, only the version 
with opaque periods works. 

1. white @or < end,tima do { 
2. compute estimate a(i) of the aarliest time, when the 

history at node i can be affected by the other nodes; 
5. ,syn&ronize; 
4. while Ti 1 $bor + B and ‘G C n(i) do { 
5. t# = : l-i; 
8. prkess events e with l&ally minimum time 7(e) = Ti; 

if required, then schedule new events for II, or other 
II,, i jd: i, antllor delete some events from I& or other 
n,,jjki; . 

.7. delete ,the processed events from II, and compute 
‘n&4 Tf 

1; 
8. synchrot&@: 
9. floor := min Ti; 

2 Zi”N 
broadcast po&:to all node+; 

to. synchronize; 

FIGURE 6. A Parallel Event-Driven Simulation Algorithm 

The concept of lookahead ratio (LAR) is introduced in 
[6] as mean service time divided by minimal service 
time. Assuming that service times are random variables 
(which is not necessarily the case in our queuing sys- 
tem example), LAR expresses the degree of opaqueness. 
Experiments [6] confirm that efficiency increases with 
greater LAR. 

In other cases, however, LAR may not represent the 
degree of opaqueness. Without changing distributions, 
and hence without changing LAR, simply making the 
queuing model more specific and exploring this spec- 

ificity, substantially larger opaque periods can be 
computed. For example, following [19], we can intro- 
duce token identities, assume that service durations are 
independent random variables, and assume FCFS disci- 
pline for the queues. (These assumptions are not used 
in the queuing example in Section 2.) Then the opaque 
period for a node would include not only the current 
service period, but also future service periods for all the 
tokens currently awaiting service in the queue. 

4. ALGORITHMS 
An algorithm for a distributed event-driven simulation 
is shown in Figure 6. The algorithm does not assume a 
specific application; it assumes only that events of arbi- 
trary nature occur at nodes of an arbitrary network. 
The algorithm maintains N registers tl, . . . fN, of simu- 
lated time and involves N PEs, one for each Iii. These 
PEs execute the program in Figure 6 in parallel. For 
any e E Iii, time I is guaranteed to be not smaller 
than ti. At each iteration the algorithm tries to achieve 
a progress in each local pool and to increase each ti. 
During the simulation, ti does not decrease. The simula- 
tion starts with floor = 0, Iii # 0 for at least one i, 
min,,, r(e) 2 0, and ti = 0 for all i. Test Ti I floor + B at 
step 4 in Figure 6 assures the bounded lag restriction. 

PEio executes this code with index i = i, starting 
from step 1. Some computations require cooperation 
among the PEs. Among these are steps 3, 8, and 10 with 
statements “synchronize,” and step 9 where mii&i&, Ti 
is computed and then broadcast. When a PE hits a 
“synchronize” statement it must wait until all the other 
N - 1 PEs hit the same statement before it may con- 
tinue. Instructions between these synchronization bar- 
riers are not necessarily executed in lockstep. A coop- 
eration between PEs might also be required at step 6, if 
a PE operates in pools of other PEs and at step 2, as 
explained below. 

Observe that the algorithm is synchronous, whereas 
the simulated system may be asynchronous. Synchroni- 
zation in the algorithm prevents undesirable overlaps. 
For example, computing m(i) at step 2 must not inter- 
leave with steps 6 and 7 where some events are being 
deleted and values Ti are being changed. 

One method to compute a(i) at step 2 is using for- 
mula (3.1). In this method, PEi communicates with the 
PEs hosting nodes j E S 1 (i, B). In the queuing system 
example, if the topology of the host matches that of the 
target graph G, and if B > 20, then the communication 
is required not only between the nearest neighbors, but 
also between distant neighbors. Moreover, the larger 
the B, the more non-neighbors are involved in commu- 
nication. 

If such a long range communication is undesirable, 
an alternative method for implementing step 2 can be 
used. Figure 7 shows two versions of this method. Both 
versions compute the same a(i) and each so computed 
a(i) is the same as the corresponding Ly(i) computed by 
(3.1), providing that the latter does not exceed floor + B. 
However, unlike algorithm (3.1), these algorithms re- 

January 1989 Volume 32 Number 1 Communications of the ACM 117 



Research Contributions 

a. A simple stopping criterion b. An improved stopping criterion 

FIGURE 7. An Alternative Method to Compute a(i) 

quire only communication between neighboring PEs. 
All PEZs execute the same version, either the one in 
Figure 7a, or the one in Figure i’b. The convention for 
interpreting codes in Figure 7 is the same as for the 
code in Figure 6: PEio executes a code with index i = 
iO. Auxiliary variables p(i), changed-a(i), and nezo-p(i) 
are ernployed by the algorithms. 

To understand these codes, it is useful to view them 
as a preliminary, coarse simulation [9]. During this pre- 
simulation, instead of events, estimates of earliest times 
when events can emerge are propagating across the net- 
work. To distinguish iterations 2.4-2.10 of the algo- 
rithm in Figure 7 from iterations 2-10 of the algorithm 
in Figure 6, the latter are called major iterations and the 
former are called minor iterations. After k minor itera- 
tions, p(i) represents an estimate for the earliest time 
when existing events can affect node i after traversing 
exactXy k links in the graph. Suppose Ti I floor + B. 
Starting with the value p(i) = T, for k = 0, as k in- 
creases, p(i) increases, being destined to exceed value 
floor -k B. However, the increase needs not be mono- 
tonic, sometimes p(i) may decrease. While /3(i) is so 
changing, a(i) is keeping the record of smallest p(i) 
achieved so far, excluding the initial value of p(i) at 
k = 0. Thus the direction of change of a(i), unlike the 
direction of change of p(i), can not be reversed. 

NOIN consider the difference between the versions in 
Figures 7a and 7b. The version in Figure 7a continues 
the minor iterations until all p(i) exceed the value floor 
+ B, which is represented by the first test in line 2.3. In 
the queuing network example, this version terminates 
after, at most, [B/al minor iterations. In a general case, 
this estimate becomes the largest number m of nodes in a 
directed path iI + . . . - i, whose total length d(i,, i2) + 
. . . + d(i,-, , im) does not exceed B. In contrast, the ver- 

sion in Figure 7 b attempts to decrease this number of 
minor iterations by using a better stopping criterion at 
step 2.3. This version capitalizes on the fact -that once 
no decrease of a(i) is detected for all i (step 11.54, a(i) 
can change no more. 

It is easy to prove this fact. Indeed, if (~k-~ (i) = m(i), 
i=l,... N, where subscript k denotes the m.inor itera- 
tion number, then none of the /3k(i), i = 1, . . . N, is 
smaller than its record low value before minor iteration 
k. Therefore, none of new-&(i) computed at step 2.4 is 
smaller than its record low value before minor iteration 
k. By the virtue of step 2.5 of the algorithm, w(i) = 
(~k+~(i). This completes the induction step. 

Neither formula (3.1) nor the algorithms in Figure 7 
uses opaque periods. While it is difficult to incorporate 
opaque periods in the computations by (XI), the algo- 
rithms in Figure 7 require only a minor modification; 
thus, step 2.4 in both modified versions reads: 

Yet another modification of the algorithm in Figure 6 
deals with cases when there are fewer PEs than nodes 
in the network by having each PE host a subnetwork. 
A fragment of a large toroidal network is shown in 
Figure 8, wherein each PE carries a 4 X 4 subnetwork. 

The general algorithms presented above can be 
greatly simplified for the Ising model simulation. Here 
the bounded lag mechanism is not needed. Therefore, 
steps 9 and 10 and test T; 5 floor + B at step 4 are 
eliminated. Computing a(i) reduces to the simple 
formula 
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PE2 

(a) 

FIGURE 8. Aggregation 

03 

Clearly, after processing a current attempted spin 
change, the current Ti becomes the same as the current 
OPi. There will be only one event e to process at step 6; 
no insertion/deletion in another pool II, is performed. 
Finally, with probability 1, no two spin change attempts 
coincide in time. The latter observation allows one to 
eliminate global “synchronize” statements and the en- 
tire algorithm reduces to the remarkably simple form 
presented in Figure 9, where r(W) and In are the same 
as in (3.2). 

The algorithm in Figure 9 is very asynchronous: dif- 
ferent PEs can execute different steps concurrently and 
can run at different speeds. A statement “wait-until 
condition,” like the one at step 2 in Figure 9, does not 
imply that the condition must be detected immediately 
after it occurs. In particular, to detect condition 

T, 5 min Tj, 
jeneighbors(i) 

jti 

while executing step 2 of this algorithm, a PE can poll 
the four neighboring PEs in an arbitrary order, one at a 
time, with arbitrary delays and interruptions, and with- 
out any respect to what these PEs are doing meanwhile. 

The algorithm in Figure 9 is free from deadlock. De- 
spite its asynchrony, it produces correct simulation his- 
tories, that is, those which are statistically equivalent to 
the histories produced by Metropolis et al. algorithm. 
Moreover, a history is reproducible, that is, it remains 
the same, independent of the conditions of run, timing 
etc., provided that (1) the random number generator 
always produces the same sequence of r’s for each 
node, and (2) no two neighboring T, and T, are equal. 

Assuming (2), “less than or equal to” at step 2 in 
Figure 9 could be replaced with “less than.” However, 
if, in violation of (2) condition 

Ti = min Tj 
jcneighbors(i) 

jti 

strikes, then the version with “less than” deadlocks. 
(A violation of (2) may be caused by a round-off error). 
The effect of the violation on the version with “less 
than or equal to” is less severe: just a point of irrepro- 
ducibility. One may use the synchronous algorithm, if 
such irreproducibility is intolerable [la]. 

An aggregation is welcome in the algorithm in Fig- 
ure 9, since a PE computes very little between commu- 
nications with the other PEs. In Figure 8, the neighbors 
of a node hosted by PEl are nodes hosted by PE2, PE3, 
PE4, or PE5. PEl has direct connections with these four 
PEs (Figure 8b). Given node i in the subnetwork of PEl, 
one can determine with which neighboring PEs com- 
munication is required in order to learn the states of 

FIGURE 9. One-Spin-per-One-PE Version of an king Simulation 
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the nlaighboring nodes. Let W(i) be the set of these PEs. 
Examples in Figure 8 are: W(a) = 0, W(b) = (PE5], 
W(c) := (PE3, PE4). 

Figure 10 presents an aggregated variant of the 
algorithm in Figure 9. PEI hosts the Ith subnetwork 
and maintains the local time register T,, I = 1, 2, . . . , 
(n/m)‘. PEI,, simulates the evolution of its subnetwork 
using the algorithm presented in Figure 10 with I = IO. 
Local times TI maintained by different PEs might be 
differant. However, within a subnetwork the simulation 
is serial, like in the standard algorithm, and the local 
time for all atoms in subnetwork I is the same, namely 
T,. In (m - 2)’ cases out of m2, step 3 of the algorithm in 

FIGURE 10. Many-Spins-per-One-PE Version of an king 
Simulation 

Figure 10 involves no busy wait, since W(i) = 0. The 
atoms i such that W(i) = 0 constitute the dashed square 
in Figure 8. 

5. PE.RFORMANCE OF SIMULATION 
First, consider the Ising simulation algorithm in Figure 
9. The performance of this algorithm will be assessed 
for the case when PEs execute at the same speed and 
synchronously as if the execution were organized in 
iterations. At step 2, PEi would start the iteration by 
first polling each of its neighbors and then testing the T, 
versus the minimum of the other four T,‘s. It would 
then complete the iteration by executing steps 3 and 4, 
if the test succeeded, or by waiting for the next itera- 
tion, if the test failed. This is a possible but not obliga- 
tory ti.ming arrangement for executing the algorithm in 
Figure 9. 

It is interesting to know what fraction of all N PEs 
succeeds the test at step 2. Those succeeding PEs make 
progress and perform useful work while the others are 
idle. Clearly, the law of spin updates implemented 
at step 3 in Figure 9 is irrelevant in answering this 
question. 

Using these rules, a serial algorithm for updating Ti’s 
in iterations is exercised for different system sizes n 
and three different dimensions: for an n-circle network, 
for an n x n toroidal network (as in the model discussed 
in section 21, and for an n x n x n network. 

The results of these experiments are given in Fig- 
ure 13-a, where the efficiency is calculated as the aver- 
age fraction of those T;‘s being updated at an iteration. 

Each solid line in Figure 11 a is enclosed between two 
dashed lines. The latter represent 99.99 percent Student’s 
confidence intervals constructed using several simula- 
tion runs, which were parametrically equal but fed 
with different random sequences. 

No analytical theory is available for predicting the 
fraction of non-idle PEs, or even for proving its separa- 
tion from zero when n + +m. However it is clear from 
Figure 11 a, that at least 12 percent of n2 = h’ PEs are 
doing useful work. With such efficiency, the speed-up 
is about 0.12 x N; for N = 214 the speed-up is more 
than 1900. 

These numbers were confirmed in an actual experi- 
ment performed on 214 = 128 X 128 PEs of a Connec- 
tion Machine (a quarter of the full computer was avail- 
able). This SIMD computer, equipped with the language 
*LISP, appeared well-suited for synchronous execution 
of the one-spin-per-one-PE algorithm in Figure 9 on a 
toroidal network. Note that the so-called multi-spin al- 
gorithms [5] update faster, but simulate a different, syn- 

(a) 

04 

FIGURE 11. Performance of the king Model Simulation: (a) One 
spin per one PE; (b) many spins per one PE 
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chronous Ising model which is trivial for parallelization. 
In contrast, Metropolis et al. algorithm, which is simu- 
lated in the experiments described here, was previously 
believed inherently serial. 

The 12 percent efficiency in the one-spin-per-one-PE 
experiments could be greatly increased by aggregation. 
The many-spins-per-one-PE algorithm in Figure 10 was 
implemented as a parallel C-program for a Balance 
computer, which is a shared memory MIMD bus ma- 
chine. The n x n network was split into m x m subnet- 
works as shown in Figure 8, where n is an integer 
multiple of m. The computer has 30 PEs, therefore the 
experiments could be performed only with (n/m)’ = 
1, 4, 9, 16, and 25 PEs for different n and m. 

Along with these experiments, a simplified serial 
model, similar to the one of the one-spin-per-one-PE 
case, was run. As in the previous case, this simplified 
model simulates a possible but not obligatory timing 
arrangement for executing the real algorithm, here the 
algorithm in Figure 10. Figure 11 b shows excellent 
agreement between performances of the two models for 
the aggregated Ising simulations. The efficiency pre- 
sented in Figure 11 b is computed by the formula 

efficiency 

serial execution time = 
number of PEs x parallel execution time 

The parallel speed-up can be found as efficiency x 
number of PEs. Efficiency is 0.66 for 25 PEs simulating 
a 120 x 120 Ising model; hence, the speed-up is greater 
than 16. For the currently unavailable sizes, when lo4 
PEs simulate a lo4 X lo* network, the simplified serial 
model predicts efficiency at about 0.8 and speed-up at 
about 8000. 

We shall now outline the proof of the l/log N scala- 
bility of the general algorithm in Figure 6. (A detailed 
proof is given in [15].) It is possible to design the host 
computer so that each “synchronize,” and each compu- 
tation and broadcast of minimum or maximum, costs 
O(log N). Under certain assumptions of network spar- 
sity (e.g., assumption 2 in the Appendix), computation 
of a(i) involves O(1) synchronizations and costs O(1) 
instructions between synchronizations. This holds for 
all three versions of the algorithm, whether using for- 
mula (%I), or the method in Figure 7a or 7b. Under the 
assumption that the number of pending events in each 
Hi is bounded from above by a constant independent of 
N and i, the cost of pool manipulations needed for pro- 
cessing one event is O(1). If we further assume that, 
independent of i and the major iteration, there are 
only O(1) events to process in each II, at each major 
iteration, we come to the overall cost of O(N log N) 
instructions for one major iteration of the algorithm 
in Figure 6. 

To evaluate performance, we need an estimate of the 
number of events processed during a major iteration. In 
principle, the simulated system may exhibit low activ- 
ity, as in the case of a single token traveling in a large 
network. If this is not the case, and the system exhibits 

a reasonably dense activity in space and time, then at 
least an order of N events is processed at each major 
iteration. The proof of the latter statement is outlined 
in the Appendix, where, in particular, the “reasonably 
dense activity” assumption is stated as a requirement 
that the number of nodes which have pending events e, 
satisfying T(e) 5 floor + B, be, on average, not less than 
of an order N. Hence the average cost of processing one 
event is O(log N), which also means at least an order of 
l/log N scalability. 

The argument formulated above for the case of N 
PEs, applies to cases where there are fewer PEs than 
nodes N, provided that the maximal number of nodes 
per PE is O(1) when N ---, 00. 

In a serial event-list algorithm, the length of the list 
would be an order of N. Best list manipulation tech- 
niques require on average an order of log N instructions 
for performing insertions and deletions needed for one 
event processing. Hence, a conventional serial algo- 
rithm spends about the same number of instructions 
processing one event, as one PE in a parallel processor. 
Observe that such a conventional algorithm does not 
use minimum propagation delays or opaque periods. 
Since there are N PEs running, the speed-up would be 
an order of N. 

A necessary first step in writing a parallel program is 
to write a serial program. Such a serial code, which 
simulates an n x n queuing model, is now operational. 
In the code, each parallel step of the algorithm in Fig- 
ure 6 is represented as a serial loop, node number i 
being the loop index. Minimization is done in a usual 
way, so it costs an order of N instructions. 

The steps which in the parallel algorithm cost an 
order of log N to each PE, are either eliminated or cost 
only an order of N in the serial algorithm. Therefore, 
each major iteration should cost at most an order of N, 
and the per-event cost should be O(1). The latter state- 
ment is tested using the following procedure. The 
model is exercised with various network sizes n, but 
with other fixed parameters p, (r, p, B, and end-time. 
Only those n which are integer multiples of 4 are taken. 
The network contains (n/4)’ sources, located at nodes 
(4u,4v),u,v =1,2 . . . . (n/4). As explained in section 
2, the source buffers are full to capacity (+m). There is 
no sink, but the positivity of p assures that the number 
of tokens circulating in the network saturates after a 
certain transient period. For all experiments the satura- 
tion occurs before the first 10000 simulated seconds 
elapse; the timing and other data are recorded during 
the immediately following interval of length lOOOu, so 
that end-time = ~CKHIU. 

A series of execution times is obtained, and each 
time is divided by n*, the number of nodes. The results 
for the version of the algorithm where (Y are computed 
as in Figure 7a, are presented in Figure 12. Because of 
execution time variability, the same run is repeated 
several times. As in the Ising model experiments, the 
dashed curves in Figure 12 represent 99.99 percent 
Student’s confidence intervals constructed from these 
samples. 
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FlGlJRE 12. Performance of the Queuing System Simulation 

Figure 12 shows very little increase of the per-node 
CPU time, despite a substantial increase in the problem 
size. Since the number of sources rises proportionally to 
the problem size, it is reasonable to presume the num- 
ber of events per node to be independent of system size 
in these experiments. This agrees with the conjectured 
per-event performance O(1). The results are similar for 
the other two versions of the algorithm. 

6. CONCLUSION: OTHER EXAMPLES, 
SHOR.TCOMINGS, FURTHER RESEARCH 
Only regular, highly symmetrical networks with simple 
communication structures (i.e., having only one token 
type, atoms with only two states, infinite buffers, etc.) 
were chosen for presentation in this article. Irregularity 
may lead to two problems: (1) a more complex map 
from the simulated system into the abstract structure 
of the algorithm (more event types, more complex 
processing rules, and opaque period computations), 
(2) load unbalance during simulation. 

The first problem should be addressed by considering 
a wide class of applications. An example of a token 
transport network simulation with finite buffers and 
nonzero transmission durations has been programmed 
[15]. An interesting phenomenon in this example is 
that minimum propagation delays and opaque periods 
stem not only from nonzero service durations but also 
from transmission durations. The latter contribute to 
the propagation delays in the counter-traffic direction, 
e.g., while a token travels from node i to node j, some 
associated events propagate from j to i. 

In an example of a timed logic simulation currently 
under investigation there are readily defined propaga- 
tion delays, but the determination of opaque periods 
appears somewhat different from that of the queuing 
systems and the Ising model. For example, an OR-gate 
with signal 1 at one input is guaranteed to remain 
opaque until this signal changes. 

By choosing in this article the symmetrical networks, 
we isolated the problem of efficient parallel coordina- 
tion from the problem of load balancing. The issue of 
load unbalance, which is of a major practical impor- 
tance, is of a different nature and, we believe, should 
be solved by different methods [Zl]. 

The speed of Ising simulations can be further in- 
creased [14] by incorporating a serial algorithm [Z]. The 
latter works faster than the standard algorithm [16] by 
avoiding processing unsuccessful spin change attempts. 
In the Ising model, algorithms [7, 111 would also capi- 
talize on the unsuccessful spin change attempts by 
guessing them correctly, when the neighbors’ spins are 
not yet known. It would be interesting to co:mpare the 
performance of the two approaches. 

The basic paradigm of the Ising simulation can be 
applied to a wider class of applications than one might 
think. These include cellular arrays [13], timed Petri 
nets, asynchronous neural networks, and communica- 
tion networks. For example, in a telephone network, 
calls arriving on a particular route, say a pair of nodes i 
and j, form a Poisson process. To figure out the new 
state of the route after the arrival, the states of the 
incident routes must be known. This situation is ex- 
pressed by equation (2.1), only instead of a graph one 
should consider a hypergraph. A node of this hyper- 
graph would be the set of original nodes constituting a 
route. The algorithm performance would depend on the 
number of neighbors, i.e., incident routes. For the one- 
spin-per-one-PE Ising simulation, Figure 11 CI shows that 
performance quickly degrades as the dimension in- 
creases: a PE waits for more neighbors at step 2 of the 
algorithm in Figure 9 as the local degree of the network 
increases. This shortcoming can be compensated by 
aggregation. The success in the aggregation (depends on 
the graph sparsity. For example, if the diameter of the 
graph is small, aggregation would not result in a sub- 
stantial reduction of the wait. 

To succeed in applying the tandem approach, global 
topological properties such as diameter are also impor- 
tant. Examples of particularly bad topologies for the 
proposed algorithms of simulation are a star, where 
N - 1 peripheral nodes are connected to a central node, 
and a fully connected graph. It becomes clear from the 
queuing system example in section 2, that propagation 
delays do not necessarily mean the physical signal 
propagation delays between nodes. The latter may be 
negligibly small and assumed to be zero in a model. Yet 
the minimum propagation delays may be substantial 
‘Lecause of known positive lower bounds on the service 
times. 

Positive lower bounds on durations of various activi- 
ties in practical systems can be found, perha.ps, more 
often, than is discussed in theoretical papers. These 
papers usually assume exponential distributions, which 
facilitate finding analytical solutions to the models. 
However, in some applications the distributions are 
exponential, e.g., if a queuing theorist wishes to verify 
his theory by a computer simulation. In such cases the 
precomputed lower bound is zero, and the tandem de- 
scribed earlier seems not to work. 

However, a simple modification enables the tandem 
to work, if we can compute positive dynamic propaga- 
tion delays, instead of precomputed (zero) staiic propa- 
gation delays. In stochastic network simulations, posi- 
tive dynamic propagation delays are zero. For example, 
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we can take a restricted stochastic version of the gen- 
eral token transport model in section 2, and assume the 
service durations to be random and independent. Be- 
cause of the independence, we can presimulate dura- 
tions of all the services by server i that belong to the 
future, not yet created history, without respect to what 
the other servers will be doing during this future his- 
tory. (A similar presimulation is used in [lg].) Specifi- 
cally, the PE hosting server i can presimulate enough 
service durations to cover the interval [max(floor, t,), 
floor + B] (based on the worst case possibility that the 
server is never idle). Then, for any neighbor j, the PE 
sets d(i, j) to be the minimum of these durations. At 
each major iteration, as floor increases, and the time 
interval [max(poor, t;), floor + B] changes, the PE up- 
dates the set of presimulated durations as well as their 
minimum d(i, j). The dynamic d(i, j) can be substan- 
tially larger than its static lower bound (T. Formula (3.1) 
becomes inconvenient in this modification, because the 
dynamic delay d(i, j) is readily available only for neigh- 
boring i and j. However, the alternative algorithms in 
Figure 7 work without change. A similar technique 
works well in more complex stochastic simulation 
models, e.g., in models with preemptive services and 
with several classes of tokens. 

In some problems, rather than just picking a random 
activity duration, the simulator might be required to 
mimic the simulated activity. A typical example is an 
instruction-level simulation of program executions, 
where the host executes each instruction of the simu- 
lated program on behalf of the simulated system. If, in 
such models, sufficiently large minimum propagation 
delays d(i, j) are hard to determine, statically or dynam- 
ically, then the proposed algorithm can be combined 
with a roll-back algorithm, e.g., with Time Warp [ll]. 
In the combined algorithm, the minimum propagation 
delays d(i, j) are substituted by surrogate values. The 
surrogate d(i, j) accounts not only for the delays in 
propagating events from i to j but also for the frequency 
of sending events over link i + j. Since the lower 
bound d(i, j) is not guaranteed, occasionally a delay in 
propagating an event from i to j can be smaller than 
d(i, j). Therefore, the roll-back might be needed. How- 
ever, unlike the “raw” roll-back [ll], the combined 
roll-back/bounded-lag algorithm, controls the fre- 
quency of roll-backs and limits their harmful cascading 
by adjusting d(i, j) and the lag bound B. This method of 
simulation is presently under study. 
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APPENDIX: 
On Average, at Least an Order of N Events are 
Processed at a Major Iteration 
An event e is said to be within the B-horizon, if T(e) 5 floor + B. 
Given the minimum-propagationdelays construct and using the 

fact that the algorithm in Figure 6 maintains the bounded lag 
property with parameters B, one easily proves the following 

Proposition 1. If pool II, contains at least one event within the 
B-horizon, then there exists at least one node i E 
S J (j, B) such that test T, c a(i) (at step 4 of the algorithm in 
Figure 6) succeeds. 

With Proposition 1, one then establishes 

Proposition 2. The number of events processed at iteration k of 
the algorithm in Figure 6 is at least 

number of pools with events 
within the B-horizon at iteration k 

maxl~r~NISf(i,B)I 
64.1) 

If the density of events is too low or graph G is not sufficiently 
sparse, then there is no hope that many events will 
be processed at an iteration. Thus, two assumptions are 
introduced: 

Assumption 1. The numerator in (A.l) or, perhaps, its 
amortized estimate (over the simulation run) is at least an 
order of N. 

Assumption 2. There exists a constant D, 0 < D < +m, inde- 
pendent of N, such that max,,,,, 1 S t (i, B) 1 5 D. 

Combining Assumptions 1 and 2 and Proposition 2, one 
proves that at least an order of N events are processed, on the 
average, at a major iteration of the algorithm in Figure 6. 
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